Check out Janggi (Korean Chess), our featured variant for December, 2024.

This page is written by the game's inventor, Florin Lupusoru.

Mathematichess

Mathematichess is a new chess variant created for both chess lovers and mathematicians. It is played on a 13x13 board and involves unique rules that incorporate mathematical concepts.

This game is a combination of Chess, Go, Rummy, and maths. The objective of the game is to control the empty squares that give value points to the owner. The value of a square depends on the number and type of pieces surrounding it.

Setup

The initial setup is a 13x13 empty board. Each player has 9 Kings, 9 Queens, 9 Treasurers, 9 Rooks, 9 Bishops, 9 Knights, 9 Guards, 9 Pawns, and 9 Farmers, with values from 9 to 1 in the order listed. 

The game has two stages:

  1. In the first stage players take turns placing their pieces anywhere on the board until all pieces are on the board.
  2. In the second stage players battle for controlling the empty squares. 

Each player has 81 pieces. When all pieces are on the board seven empty squares should remain. The empty squares are the focus of the game. 

 

diagram

Pieces

Each piece has a certain numerical value from 1 to 9. There are four types of moves:

  1. Sliding (one square orthogonally or diagonally, or both).
  2. Jumping (like a Knight, or one square diagonally, or orthogonally, or both).
  3. Pushing (pushing an entire line, or column, or diagonal).
  4. Substituting (swapping places with nearby pieces).

Only the Knight retains its original move from classic chess. Pieces have to move differently from classic chess due to the crowded board.

All piece movements are only allowed towards an empty square.

Sliders:

Jumpers:

Pushers:

Substituters:

Terminators:

 

Rules

There is no castling, no en passant, no promotions, no check, and no check mate. Also, there is no capturing of pieces. The battle is arround the empty squares. Each empty square represents a territory whose value is given by the value of the pieces surrounding it. The objective of the game is to control as many territories as possible. 

Pieces surrounding a territory (one square away orthogonally or diagonally) are called Settlers. The value of a teritory is given by the value of its Settlers. 

Each teritory can have 8 Settlers in the centre of the board, 5 Settlers on a side, and 3 on a corner. Players are allowed to join territories (two or three, or more empty squares) if they can control them. 

There are two types of territories:

  1. Sovereign (a teritory where a player has a numerical advantage).
  2. Shared (a teritory where the black/white pieces are on a 50/50 ratio). 

By their composition, territories can also be homogeneous and mixed. A territory becomes homogeneous if pieces of the same kind form the majority of the group (Settlers) controlling it. Homogeneous territories give a huge advantage to its owner because of the extra points it brings. 

The value of a territory is calculated as following:

Pieces controlling the sides of a territory (First Class Settlers) are more important than the pieces controlling its corners (Second Class Settlers). 

Kings and Queens represent the Royals. 

If at least two pieces of the same kind and of the same color become Settlers of the same territory in a Sovereign territory belonging to the owner of that color, that color can no longer be invaded by the enemy. A "Secured Territory" (that can no longer be invaded) also freezes its own Settlers. They can no longer be pushed or substituted by the opponent, but its own owner can still move pieces around to increase its value.  This rule only applies if both pieces are (First Class Settlers) controlling the sides, not the corners, of that territory. 

Since the game has so manny possible territorial compositions, the game may end by agreement between the two players, but not before both Terminator moves have been played.

A game cannot end in the first stage. 

Here are some possible game endings:

At the end of the game each player calculates the value of his own Sovereign territories, and adds the value of his pieces from the Shared territories. 

Players may also decide the winning conditions and the value of the additional (bonus) points. 

 



This 'user submitted' page is a collaboration between the posting user and the Chess Variant Pages. Registered contributors to the Chess Variant Pages have the ability to post their own works, subject to review and editing by the Chess Variant Pages Editorial Staff.


By Florin Lupusoru.

Last revised by Florin Lupusoru.


Web page created: 2023-05-07. Web page last updated: 2024-01-04

Revisions of MSmathematichess