In the comments section of chess with different armies Vickalan Reinhart (the author of CoaIP) stated " As far as I know, there is no upper bounds for the maximum size of a good board size, and even infinitelly-large boards are easily playable and fun. " I think the remark I am going to make is more appropriate here.
I just wanted to make the remark that the term "on an infinite plane" is appropriate as the game is not that infinite after all. It has a decent number of pieces and the effect of board largeness fades away far. It would be more "infinite" if maybe players would have pieces according to some rules all over the board (with an 50% density maybe). For example white would have a knight on all white squares on even files, and black would have a knight on all black squares on odd files. That would be quite silly (almost all knights are undefended and attacked), but with work one can make more complex rules for more pieces. From a mathematical point of view these games would be quite interesting but as of 2018 we don't have the technology or not even knowledge to tackle such complex problems :)! But we as cyborgs of the future will get there. Mark my words :)!
In the comments section of chess with different armies Vickalan Reinhart (the author of CoaIP) stated " As far as I know, there is no upper bounds for the maximum size of a good board size, and even infinitelly-large boards are easily playable and fun. " I think the remark I am going to make is more appropriate here.
I just wanted to make the remark that the term "on an infinite plane" is appropriate as the game is not that infinite after all. It has a decent number of pieces and the effect of board largeness fades away far. It would be more "infinite" if maybe players would have pieces according to some rules all over the board (with an 50% density maybe). For example white would have a knight on all white squares on even files, and black would have a knight on all black squares on odd files. That would be quite silly (almost all knights are undefended and attacked), but with work one can make more complex rules for more pieces. From a mathematical point of view these games would be quite interesting but as of 2018 we don't have the technology or not even knowledge to tackle such complex problems :)! But we as cyborgs of the future will get there. Mark my words :)!