Check out Janggi (Korean Chess), our featured variant for December, 2024.

Game Courier Ratings for %

This file reads data on finished games and calculates Game Courier Ratings (GCR's) for each player. These will be most meaningful for single Chess variants, though they may be calculated across variants. This page is presently in development, and the method used is experimental. I may change the method in due time. How the method works is described below.

There may be a delay while it reads the database and calculates results.

Game Filter: Log Filter: Group Filter:
Tournament Filter: Age Filter: Status Filter:
SELECT * FROM FinishedGames WHERE Rated='on'

You are viewing ratings based on a wildcard that includes all Chess variants played on Game Courier. This is not as meaningful as ratings based on a single variant, which you may find in the Related menu for each preset.

Game Courier Ratings for %
Accuracy:70.51%69.80%70.53%
NameUseridGCRPercent wonGCR1GCR2
Play Testerplaytester1855290.5/330 = 88.03%18131897
Hexa Sakkbosa601855136.5/151 = 90.40%18271883
Francis Fahystamandua1823247.0/300 = 82.33%18271818
dax00dax001817161.0/167 = 96.41%18271807
Homo Simiaalienum180279.0/99 = 79.80%17821821
Kevin Paceypanther1780623.0/888 = 70.16%17851776
Carlos Cetinasissa1758788.5/1158 = 68.09%17301785
Cameron Milesshatteredglass171815.0/17 = 88.24%17161721
Jochen Muellerleopold_stotch169955.0/92 = 59.78%16831715
H Spetyura169613.0/13 = 100.00%16861707
Yaotl Kolotikyolokayotl168926.0/28 = 92.86%16681711
Fergus Dunihofergus166965.5/103 = 63.59%16711667
Jose Carrilloj_carrillo_vii166288.5/155 = 57.10%16641660
Vitya Makovmakov3331662541.0/1084 = 49.91%16411683
Gary Giffordpenswift165652.5/77 = 68.18%15731740
Tim O'Lenatim_olena163618.5/31 = 59.68%16421629
CSS Dixielandcssdixieland162718.0/25 = 72.00%16021653
David Paulowichdavid_64162712.0/15 = 80.00%16231631
shift2shiftshift2shift161911.0/19 = 57.89%16091628
Stephen Williamsneph161411.0/12 = 91.67%15701659
Vitya Makovmakov16127.5/8 = 93.75%16101614
Charles Danielfrozen_methane161135.0/64 = 54.69%15701652
Andreas Kaufmannandreas16077.0/7 = 100.00%16091605
Erik Lerougeerik1601141.5/262 = 54.01%16691532
Pericles Tesone de Souzaperitezz15888.0/8 = 100.00%15881588
ctzctz157812.0/17 = 70.59%15511605
attack hippoattackhippo15785.5/7 = 78.57%15731582
TH6notath615767.0/12 = 58.33%15681584
kokoszkokosz15767.0/8 = 87.50%15571595
Abdul-Rahman Sibahisibahi157616.0/23 = 69.57%15651586
Jenard Cabilaomgawalangmagawa157311.0/23 = 47.83%15861561
Plamen Draganovdraganov15734.0/4 = 100.00%15721573
Alexander Trotterqilin15734.0/4 = 100.00%15741572
Stephen Stockmanstevestockman157110.0/16 = 62.50%15751567
Christine Bagley-Joneszcherryz15693.5/5 = 70.00%15681571
Raymond Dlewel156113.0/22 = 59.09%15781544
je jujejujeju156036.5/61 = 59.84%15601560
Isaac Felpsattacker14415585.0/6 = 83.33%15591557
Thor Slavenskyslavensky15555.0/7 = 71.43%15341576
Nicola Caridiniccar15543.0/3 = 100.00%15571550
Nicholas Wolffnwolff15539.0/15 = 60.00%15771529
Daniel Zachariasarx1553222.0/428 = 51.87%15741531
Roberto Lavierirlavieri200315503.0/3 = 100.00%15451555
Simon Runspeakablegamer15505.0/8 = 62.50%15381561
carlos carloscarlos154516.0/27 = 59.26%15211569
pallab basupallab154531.0/60 = 51.67%15271563
michirmichir15432.0/2 = 100.00%15421544
S Ssim15436.0/9 = 66.67%15311554
Neil Spargospargo15393.0/4 = 75.00%15311546
Greg Strongmageofmaple1538106.0/219 = 48.40%15811495
Nicholas Wolffmaeko153665.5/141 = 46.45%15601512
Sandra#Paul BRANDLYARDsandravers13067515363.0/4 = 75.00%15331538
Tom e4ktome4k15362.0/2 = 100.00%15351536
Julien Coll Moratfacteurix15342.0/3 = 66.67%15321536
Todd Witterstoddw15342.0/2 = 100.00%15331535
Eric Greenwoodcavalier15344.0/6 = 66.67%15441524
Jake Palladinocerebralassassin15312.0/2 = 100.00%15271535
Matthew Montchalinmatthew_montchal15313.0/4 = 75.00%15291533
Máté Csarmaszcsarmi15287.0/16 = 43.75%15481509
Fred Koktangram15282.0/3 = 66.67%15291527
joe rosenbloombootzilla15282.0/3 = 66.67%15271529
Chuck Leegyw6t152717.5/39 = 44.87%15131542
Uwe Kreuzercaissus15272.0/2 = 100.00%15241530
Joseph DiMurotrojh15261.0/1 = 100.00%15341519
je jujejujejujeju15252.0/2 = 100.00%15131537
Yeinzon Rodríguez Garcíayeinzon15241.0/1 = 100.00%15281520
Adrian Alvarez de la Campaadrian15243.5/6 = 58.33%15241523
dicepawndicepawn15211.0/1 = 100.00%15251518
Tom Westtwrecks15201.0/1 = 100.00%15211519
von raidervonraider15201.0/1 = 100.00%15191520
Larry Wheelerbrainburner15191.0/1 = 100.00%15211518
Dougbughouse15191.0/1 = 100.00%15201518
Georg Spengleravunjahei15189.0/28 = 32.14%15041532
Richard Titlertitle15181.0/1 = 100.00%15191518
Garrett Smithgmsmith15181.0/2 = 50.00%15241512
strings 808017424strings80801742415181.0/1 = 100.00%15181518
Trevor Savagesavage15181.0/1 = 100.00%15181518
yas kumkumagai15181.0/1 = 100.00%15181518
David Levinsmidrael15181.0/1 = 100.00%15181518
whitenerdy53whitenerdy5315181.0/1 = 100.00%15181518
15181.0/1 = 100.00%15181518
Antonio Bruzzitotonno_janggi15181.0/1 = 100.00%15181518
eunchong leeeunchong15181.0/1 = 100.00%15181518
Angel47 Usmanangel4715181.0/1 = 100.00%15181518
calebblazecalebblaze15181.0/1 = 100.00%15181518
Jan Żmudajanzmuda15171.0/1 = 100.00%15181517
Titus Ledbettertbl215171.0/1 = 100.00%15181517
bosa6bosa615171.0/1 = 100.00%15151519
M Wintherkalroten15171.0/1 = 100.00%15181516
Nobody Importantcomradm15171.0/1 = 100.00%15161518
Hesham Husseinegy_sniper15171.0/1 = 100.00%15171517
Samuel Hoskinscouriergame15171.0/2 = 50.00%15291505
Aaron Smithzirtoc15162.5/5 = 50.00%15131520
Georges-Clounet Jesuispartoutgeorgesclounet15161.0/1 = 100.00%15131519
Antonio Barratotonno15161.0/1 = 100.00%15141518
pink sockpickett_aaron15152.0/3 = 66.67%15151515
spiptorben15151.0/2 = 50.00%15141515
Simon Langley-Evansslangers15151.5/2 = 75.00%15131516
xxmanxxman15141.0/2 = 50.00%15191509
John Gallantbigjohn151416.0/34 = 47.06%14781550
Nathanlokor15131.0/2 = 50.00%15131514
Leon Careyleoncarey15121.0/1 = 100.00%15071518
Max Kovalmaxkoval15121.0/1 = 100.00%15061519
pheko Motaungcouriermabovini151235.5/70 = 50.71%15641460
mystery playercentipede15102.0/5 = 40.00%15131506
xeongreyxeongrey15098.0/17 = 47.06%15161503
Antoine Fourrièreantoinefourriere15091.5/2 = 75.00%15081511
Joe Joycejoejoyce150922.5/68 = 33.09%14791539
Zachary Wadeazost1215083.0/5 = 60.00%15031513
As Bardhiasbardhi15081.0/2 = 50.00%15131502
Anthony Viensstarkiller15082.0/4 = 50.00%14991517
Diceroller is Firecryinto150620.0/36 = 55.56%14711540
Graeme Neathamgrayhawke15051.0/2 = 50.00%15031508
Natalia Dolindowhitetiger15041.0/2 = 50.00%15031504
Kent Weschlerperplexedibex15031.0/3 = 33.33%15041502
Albert Vámosiblackrider_4815031.0/4 = 25.00%15151490
Gee Beegdimension15021.0/2 = 50.00%15021502
Hans Henrikssonhasurami15022.0/4 = 50.00%14921512
Colin Adamslionhawk15021.0/2 = 50.00%15051500
Boyko Ahtarovzdra4150210.0/23 = 43.48%14831520
Tom Trenchtomdench9515020.5/1 = 50.00%15001503
noy noynoy15013.0/7 = 42.86%14851517
Colin Weaveruselessgit15011.0/4 = 25.00%15001502
Given Familyzantonlan15001.0/2 = 50.00%15001500
Anonymous Coderac12315001.0/2 = 50.00%15001500
Eni Lienili149811.5/46 = 25.00%15141483
Thom Dimentunwiseowl14982.0/5 = 40.00%14991497
Juan Pablo Schweitzer Kirsingerdefender14971.0/2 = 50.00%14951499
Armin Liebhartlunaris149725.0/58 = 43.10%14481545
John Smithultimatecoolster14973.0/9 = 33.33%14971497
Jeremy Thompsonjezzat149614.0/57 = 24.56%14661526
Max Fengwowimbob111214941.0/3 = 33.33%14971492
DFA Productions70nyd014920.0/1 = 0.00%14961489
don anezdonanez14920.0/1 = 0.00%14961488
Michael Christensenjustsojazz14920.0/1 = 0.00%14961487
hubergerdhubergerd14920.0/1 = 0.00%14961487
vikvik14910.0/1 = 0.00%14971486
kunkunkunkun14910.0/1 = 0.00%14971486
Hugo Mendes-Nuneshugo199514910.0/1 = 0.00%14971485
Fabner Cruz Gracilianofabner14910.0/1 = 0.00%14971484
Bob Brownbobhihih14900.0/1 = 0.00%14971484
Ricardo Florentinoricmf14900.0/1 = 0.00%14931487
ugo judeugojude14900.0/1 = 0.00%14961484
wyatt wyattquimssarcasm14900.0/1 = 0.00%14971483
potato imaginatorpotato14900.0/1 = 0.00%14931486
John Badgerjbadger14900.0/1 = 0.00%14961484
Urvish Desaiurvishdesai14900.0/1 = 0.00%14931486
jesus babyboypokechamp14900.0/1 = 0.00%14971482
Milton Haddockmiltonhaddock14890.0/1 = 0.00%14961483
xerisianxxerisianx14890.0/1 = 0.00%14941485
Hsa Saidh14890.0/1 = 0.00%14971481
Esperllynmogik14890.0/1 = 0.00%14961482
loveokenloveoken14890.0/1 = 0.00%14941484
makomako14890.0/1 = 0.00%14961482
Steve Polleychessfan5914890.0/1 = 0.00%14941484
Matias I.tsatziq14890.0/1 = 0.00%14961481
Anders Gustafsonancog14890.0/1 = 0.00%14961481
Hafsteinn Kjartanssonhnr0114890.0/1 = 0.00%14961481
Jason Stehlyjasonstehly14880.0/1 = 0.00%14941483
Erlang Shenerlangshen14880.0/1 = 0.00%14951481
Éric Manálangedubble1914880.0/1 = 0.00%14941482
Four PlayerChessfourplayerchess14880.0/1 = 0.00%14941482
gwashinggwashing14880.0/1 = 0.00%14911484
Ben Reinigerbenr14880.0/1 = 0.00%14941481
Lamai grouplamai14880.0/1 = 0.00%14941481
zanzibarzanzibar14880.0/1 = 0.00%14921484
Ivan Velascoswordandsilver14870.0/1 = 0.00%14921483
Rob Brownsteelhead14870.0/1 = 0.00%14911483
DJ Linickdjlinick14870.0/1 = 0.00%14911482
László Gadosdani198314871.0/4 = 25.00%14831491
Joseph Yoderjjosseepphh14870.0/1 = 0.00%14861488
Dead Accountqqzlbpdilchr14860.0/1 = 0.00%14921481
Ronald Brierleybenwb14860.0/1 = 0.00%14861487
thiago regob3aring14861.0/3 = 33.33%14871486
dghanddghand14860.0/1 = 0.00%14861486
Lwebato14860.0/1 = 0.00%14861486
anon anonchessvar114860.0/1 = 0.00%14871485
avni avniavni14860.0/1 = 0.00%14871484
Bradlee Kingstonbrad1914850.0/1 = 0.00%14891482
François Houdebertfhou14850.0/1 = 0.00%14871484
Andy Thomasandy_thomas14850.0/1 = 0.00%14881483
Mike Smolowitzmjs170114850.0/1 = 0.00%14891481
Brock Sampsonthe_iron_kenyan14850.0/1 = 0.00%14871483
William Crewscrewsdude14850.0/1 = 0.00%14881482
Nasmichael Farrismichaeljay14850.0/1 = 0.00%14881482
john applejohnnyappleseed714850.0/1 = 0.00%14871483
Luis Menendezpleyades2114850.0/1 = 0.00%14881482
Gus Dunihoduniho14850.0/1 = 0.00%14891481
Alexandr Kremenakremen14850.0/1 = 0.00%14891481
maolan leonardruby14850.0/1 = 0.00%14881482
Travis Comptonironlance14850.0/1 = 0.00%14881481
Paolo Porsiapillau14850.0/1 = 0.00%14881481
Kyle Hagemanfoofoo9914840.0/1 = 0.00%14881480
Derek Mooseelevatorfarter14841.0/3 = 33.33%14841484
James Sprattwhittlin14840.0/1 = 0.00%14861481
Julianredpanda148417.0/35 = 48.57%14631504
Giuseppe Acciarocoopwie14842.0/5 = 40.00%14781489
Jeremy Goodyamorezu14840.0/1 = 0.00%14851482
andy lewickiherlocksholmes14840.0/1 = 0.00%14861481
yi fang liuliuyifang14830.0/1 = 0.00%14861481
sixtysixty14830.0/3 = 0.00%14881479
Siwakorn Songragskyhistory14830.0/1 = 0.00%14841483
scythian blunderq1234514830.0/2 = 0.00%14871479
Solomon Salamasol71014830.0/1 = 0.00%14821484
Jacob Eugenioe45w14830.0/1 = 0.00%14841482
Antony Vailevichjabberw0cky114830.0/1 = 0.00%14821484
Turk Osterburgtalen3141593141514830.0/1 = 0.00%14841481
Doge Masterdogemaster14830.0/1 = 0.00%14841481
higuyzzz91028 Charles Kimdallastexas14830.0/1 = 0.00%14841481
manolo manolomanolo14830.0/1 = 0.00%14831483
Nicholas Archerchess_hunter14830.0/2 = 0.00%14881477
Dan Kellydankelly14830.0/1 = 0.00%14841481
Paul2memorysorowthorn14830.0/1 = 0.00%14831482
MichaÅ‚ Jarskihookz14830.0/1 = 0.00%14821483
Andreas Bunkahlebunkahle14830.0/1 = 0.00%14831482
Jose Canceljoche14830.0/1 = 0.00%14831482
Tony Quintanillatony_quintanilla14820.0/1 = 0.00%14821483
Roberto Cassanotamerlano14820.0/1 = 0.00%14841481
Jun Ocampojunpogi14820.0/2 = 0.00%14871478
btstwbtstw14820.0/1 = 0.00%14841481
cdpowercdpower14820.0/1 = 0.00%14841480
legendlegend14820.0/2 = 0.00%14921473
wabbawabba14820.0/1 = 0.00%14831481
Hung Daobyteboy14820.0/1 = 0.00%14831481
Uri Bruckbruck14820.0/2 = 0.00%14921473
Minh Dangminhdang14820.0/1 = 0.00%14811482
anna colladoapatura_iris14820.0/1 = 0.00%14811482
Joseph Grangercdafan14820.0/1 = 0.00%14811482
luigi mattagigino4214820.0/1 = 0.00%14801483
Thomas Meehanorangeaurochs14820.0/1 = 0.00%14821481
Robin Sneijderrobinwooter214820.0/1 = 0.00%14811482
Виктор Байгужаковbajvik14820.0/1 = 0.00%14821481
Wottonwotton14810.0/1 = 0.00%14811481
Harry Gaoharrygao14810.0/1 = 0.00%14811481
y kumyasuhiro14810.0/1 = 0.00%14811481
Ryan Schwartzshunoshi14810.0/1 = 0.00%14811481
ben chewben558214810.0/1 = 0.00%14811481
jj14810.0/1 = 0.00%14811481
Babo Jeffbabojeff14810.0/1 = 0.00%14811481
wonsang leewonsang14810.0/1 = 0.00%14811481
Vitali Maslanskivitali_1014810.0/1 = 0.00%14811481
paulblazepaulblaze14810.0/1 = 0.00%14811481
blundermanblunderman14810.0/1 = 0.00%14811481
Abe Anonapostateabe14810.0/1 = 0.00%14801482
Mark Thompsonmarkthompson14810.0/2 = 0.00%14921469
championchampion14810.0/2 = 0.00%14851476
arcasorarcasor14800.0/1 = 0.00%14791481
trtztrtz gfghtrtztrtz14800.0/2 = 0.00%14871474
Bn Emnelk11414800.0/2 = 0.00%14841476
andres fuentesxabyer14800.0/2 = 0.00%14821478
Diego M.diego14800.0/3 = 0.00%14851475
rederikrederik14800.0/1 = 0.00%14781481
Francesco Casalinofrancesco14790.0/2 = 0.00%14841474
voicantvoicant14790.0/1 = 0.00%14761481
Jeff Bezoscroissantman14790.0/1 = 0.00%14761481
qidb602qidb60214780.0/2 = 0.00%14841473
N Wolffpoint01iv14781.0/3 = 33.33%14731483
Ivan Kosintsevbombino14780.0/1 = 0.00%14751481
ologyology14780.0/1 = 0.00%14751481
John Twycrossjt14770.0/2 = 0.00%14771478
Frank Istvánistvan6014760.0/2 = 0.00%14861467
wdtrwdtr14760.0/3 = 0.00%14801472
Steve Hsteve_201014760.0/2 = 0.00%14721480
Alexander Krutikovlonewolf14761.0/4 = 25.00%14721479
Ivan Ivankillbill22514760.0/1 = 0.00%14701481
Francisco Magalhãeslowcarbknight14750.0/1 = 0.00%14691481
Szling Ozecszling_ozec14750.0/3 = 0.00%14781472
tedy efwttei27fmrw7de14750.0/1 = 0.00%14681481
Nathan Holdenlinsolv14750.0/1 = 0.00%14671482
Aurelian Floreacatugo1474260.5/758 = 34.37%15531396
Todor Tchervenkovtchervenkov14741.0/4 = 25.00%14731474
Charles Gilmancharles_gilman14740.0/2 = 0.00%14731474
Travis Comptonblackrood14730.0/2 = 0.00%14721475
Lennon Figueiredogiwseppe14731.0/4 = 25.00%14711476
Pablo Denegrideep_thinker14730.0/2 = 0.00%14761471
danielmacduffdanielmacduff14730.0/3 = 0.00%14701475
Em Nilddetective4714720.0/2 = 0.00%14741470
Kacper Rutkowskikacperrutkowski14710.0/2 = 0.00%14741469
cherokee malansailorhertzog14710.0/2 = 0.00%14781464
Pat Quexionezsuperpatzermaste14710.0/4 = 0.00%14721470
Sergey Biryukovsbiryukov14710.0/4 = 0.00%14721470
jeremy diniericharles_bukowski14700.0/2 = 0.00%14681473
Вадря Покштяpokshtya147013.0/31 = 41.94%14521487
Zoli M Zoltánbaltazarprof14690.0/5 = 0.00%14821457
dfe6631dfe663114690.0/2 = 0.00%14641474
andrewthepawnandrewthepawn14690.0/2 = 0.00%14661472
iuchi45iuchi4514680.0/2 = 0.00%14661470
Florin Lupusorulittlewolf14680.0/3 = 0.00%14751460
Memedes Lulagiwseppe314670.0/2 = 0.00%14691466
A tomiatomi14674.5/16 = 28.12%14631471
Zac Sparxkrinid14660.0/2 = 0.00%14671465
Donut Donutdonutdonut14650.0/2 = 0.00%14661465
playshogiplayshogi14650.0/2 = 0.00%14661463
Scott Crawfordmathemagician14640.0/7 = 0.00%14741455
Michael Nelsonmikenels14640.0/2 = 0.00%14621466
michael collinsverderben14641.0/5 = 20.00%14701458
Namik Zadenamik14630.0/2 = 0.00%14611465
andy lewickietaoni14620.0/2 = 0.00%14611464
Scott McGrealagentofchaos14607.0/18 = 38.89%14561464
Andy Lewickiondraszek14600.0/3 = 0.00%14531466
Graemegraemecn14580.0/3 = 0.00%14551460
Michael Huntkronsteen3314580.0/3 = 0.00%14481468
Николай Сокольскийalexich14560.0/4 = 0.00%14621450
louisvlouisv14560.0/3 = 0.00%14581453
Nick Wolffwolff145526.0/72 = 36.11%14361474
Bob Greenwadebobgreenwade14530.0/3 = 0.00%14491458
John Langleyjonners14520.5/4 = 12.50%14521451
Dayrom Gilallahukbar14510.0/3 = 0.00%14511452
Michael Schmahlmschmahl14515.0/15 = 33.33%14601443
Aaron Maynardvopi14511.0/6 = 16.67%14471454
vitaliy ravitztalsterch14512.0/15 = 13.33%14321469
Joshua Tsamraku14505.0/12 = 41.67%14261474
Linn Russellfreakat14490.0/3 = 0.00%14491449
Adalbertus Kchewoj14481.0/5 = 20.00%14401455
Sagi Gabaysagig7214450.5/16 = 3.12%14271462
dmitarzvonimirdmitarzvonimir14430.0/5 = 0.00%14391446
A. M. DeWittchessshogi14430.0/5 = 0.00%14471439
heche60heche6014422.0/12 = 16.67%14431442
Jeremy Goodjudgmentality143943.5/127 = 34.25%14381439
Evan Jorgensonsabataegalo14370.0/7 = 0.00%14251448
Evert Jan Karmanevertvb14352.5/11 = 22.73%14181453
Phoenix TKartkr10101014342.0/9 = 22.22%14371430
Alan Galetornadic14303.0/20 = 15.00%14221438
Matthew La Valleesherman10114306.0/23 = 26.09%14141445
Jon Dannjon_dann14300.0/4 = 0.00%14261433
juan rodriguezrodriguez142611.5/38 = 30.26%14361416
Daniil Frolovflowermann14243.0/16 = 18.75%14111436
boukineboukine14204.0/13 = 30.77%13871453
Jack Zavierubersketch14190.0/6 = 0.00%14121426
Jeremy Hook10011014192.0/30 = 6.67%14191418
Arthur Yvrardtorendil14160.0/7 = 0.00%14111421
John Davischappy14133.0/17 = 17.65%14021424
Evan Jorgensonejorgens14120.0/7 = 0.00%14031421
yellowturtleyellowturtle14120.0/10 = 0.00%14131410
Paul Rapoportnumerist14110.0/7 = 0.00%14141408
Samuel de Souzasamsou14110.0/8 = 0.00%14111411
Митя Стрелецкийsocrat8314070.0/10 = 0.00%13961417
Jean-Louis Cazauxtimurthelenk14042.0/15 = 13.33%14041405
George Dukegwduke140442.5/117 = 36.32%13521456
Dmitry Strelyabba8314030.0/10 = 0.00%14181388
darren paullramalam139713.5/99 = 13.64%13751418
Bogot Bogotolbog139112.0/44 = 27.27%13781404
Митя Митяbahram13861.0/17 = 5.88%14001373
mrxx2016mrxx201613770.0/17 = 0.00%13931361
Сергей Маэстроfantomas13551.0/31 = 3.23%13591351
Nakanaka13530.0/11 = 0.00%13221384
Omnia Nihilosacredchao134813.0/73 = 17.81%13261371
Diogen Abramelindanko13340.0/35 = 0.00%13201348
Oisín D.sxg133352.0/252 = 20.63%13101356
Сергей Бугаевскийbugaevsky12913.0/56 = 5.36%12821299
Richard milnersesquipedalian127715.0/274 = 5.47%12951260
Alisher Bolsaniraja8512720.0/46 = 0.00%12581287
wdtr2wdtr2125022.5/201 = 11.19%12581241
per hommerbergper3112442.0/82 = 2.44%12091279

Meaning

The ratings are estimates of relative playing strength. Given the ratings of two players, the difference between their ratings is used to estimate the percentage of games each may win against the other. A difference of zero estimates that each player should win half the games. A difference of 400 or more estimates that the higher rated player should win every game. Between these, the higher rated player is expected to win a percentage of games calculated by the formula (difference/8)+50. A rating means nothing on its own. It is meaningful only in comparison to another player whose rating is derived from the same set of data through the same set of calculations. So your rating here cannot be compared to someone's Elo rating.

Accuracy

Ratings are calculated through a self-correcting trial-and-error process that compares actual outcomes with expected outcomes, gradually changing the ratings to better reflect actual outcomes. With enough data, this process can approach accuracy to a high degree, but error remains an essential element of any trial-and-error process, and without enough data, its results will remain error-ridden. Unfortunately, Chess variants are not played enough to give it a large data set to work with. The data sets here are usually small, and that means the ratings will not be fully accurate.

One measure taken to eke out the most data from the small data sets that are available is to calculate ratings in a holistic manner that incorporates all results into the evaluation of each result. The first step of this is to go through pairs of players in a manner that doesn't concentrate all the games of one player in one stage of the process. This involves ordering the players in a zig-zagging manner that evenly distributes each player throughout the process of evaluating ratings. The second step is to reverse the order that pairs of players are evaluated in, recalculate all the ratings, and average the two sets of ratings. This allows the outcome of every game to affect the rating calculations for every pair of players. One consequence of this is that your rating is not a static figure. Games played by other people may influence your rating even if you have stopped playing. The upside to this is that ratings of inactive players should get more accurate as more games are played by other people.

Fairness

High ratings have to be earned by playing many games. They are not available through shortcuts. In a previous version of the rating system, I focused on accuracy more than fairness, which resulted in some players getting high ratings after playing only a few games. This new rating system curbs rating growth more, so that you have to win many games to get a high rating. One way it curbs rating growth is to base the amount it changes a rating on the number of games played between two players. The more games they play together, the more it approaches the maximum amount a rating may be changed after comparing two players. This maximum amount is equal to the percentage of difference between expectations and actual results times 400. So the amount ratings may change in one go is limited to a range of 0 to 400. The amount of change is further limited by the number of games each player has already played. The more past games a player has played, the more his rating is considered stable, making it less subject to change.

Algorithm

  1. Each finished public game matching the wildcard or list of games is read, with wins and draws being recorded into a table of pairwise wins. A win counts as 1 for the winner, and a draw counts as .5 for each player.
  2. All players get an initial rating of 1500.
  3. All players are sorted in order of decreasing number of games. Ties are broken first by number of games won, then by number of opponents. This determines the order in which pairs of players will have their ratings recalculated.
  4. Initialize the count of all player's past games to zero.
  5. Based on the ordering of players, go through all pairs of players in a zig-zagging order that spreads out the pairing of each player with each of his opponents. For each pair that have played games together, recalculate their ratings as described below:
    1. Add up the number of games played. If none, skip to the next pair of players.
    2. Identify the players as p1 and p2, and subtract p2's rating from p1's.
    3. Based on this score, calculate the percent of games p1 is expected to win.
    4. Subtract this percentage from the percentage of games p1 actually won. // This is the difference between actual outcome and predicted outcome. It may range from -100 to +100.
    5. Multiply this difference by 400 to get the maximum amount of change allowed.
    6. Where n is the number of games played together, multiply the maximum amount of change by (n)/(n+10).
    7. For each player, where p is the number of his past games, multiply this product by (1-(p/(p+800))).
    8. Add this amount to the rating for p1, and subtract it from the rating for p2. // If it is negative, p1 will lose points, and p2 will gain points.
    9. Update the count of each player's past games by adding the games they played together.
  6. Reinitialize all player's past games to zero.
  7. Repeat the same procedure in the reverse zig-zagging order, creating a new set of ratings.
  8. Average both sets of ratings into one set.


Written by Fergus Duniho
WWW Page Created: 6 January 2006